all-trans-Retinoic acid increases nitric oxide synthesis by endothelial cells: a role for the induction of dimethylarginine dimethylaminohydrolase.

نویسندگان

  • Vinod Achan
  • Cam T L Tran
  • Francesca Arrigoni
  • Guy St J Whitley
  • James M Leiper
  • Patrick Vallance
چکیده

all-trans-Retinoic acid (atRA) has important effects on the developing and mature cardiovascular system. Nitric oxide (NO) production has been associated with the atRA-induced differentiation of neuronal cells, and we hypothesized that NO may also mediate certain actions of atRA in the cardiovascular system. We studied the effects of atRA on NO production by endothelial cells and determined whether regulation of enzymes responsible for metabolism of asymmetric dimethylarginine (ADMA) contributed to the effects seen. Murine endothelioma (sEnd.1) cells were incubated with or without atRA. Nitrite production was determined using the Griess reaction. The expression of NO synthase (NOS) and dimethylarginine dimethylaminohydrolase (DDAH) genes was determined by Northern blotting. A reporter gene assay was also used to study the effect of atRA on the DDAH II promoter. atRA significantly increased nitrite production by sEnd.1 cells despite no increase in eNOS expression. atRA also increased DDAH II gene expression and promoter activity and reduced the ratio of ADMA to symmetric dimethylarginine (SDMA) in culture medium. The DDAH inhibitor 4124W significantly reduced the induction of NO synthesis by atRA. The present study demonstrates that atRA increases NO synthesis in endothelial cells without increasing eNOS expression. atRA also increases the expression of DDAH II, the predominant DDAH isoform in endothelial cells. Our data suggests that the induction of NO synthesis by atRA may be facilitated by DDAH II. This pathway may help to explain some of the effects of atRA on the cardiovascular system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats

Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...

متن کامل

Dimethylarginine dimethylaminohydrolase activity modulates ADMA levels, VEGF expression, and cell phenotype.

Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthase and is metabolised by dimethylarginine dimethylaminohydrolase (DDAH). Elevated levels of circulating ADMA correlate with various cardiovascular pathologies less is known about the cellular effects of altered DDAH activity. We modified DDAH activity in cells and measured the changes in ADMA levels, morphologic...

متن کامل

Dimethylarginine dimethylaminohydrolase regulates nitric oxide synthesis: genetic and physiological evidence.

BACKGROUND NO is a major regulator of cardiovascular physiology that reduces vascular and cardiac contractility. Accumulating evidence indicates that endogenous inhibitors may regulate NOS. The NOS inhibitors asymmetric dimethylarginine (ADMA) and N-monomethylarginine are metabolized by the enzyme dimethylarginine dimethylaminohydrolase (DDAH). This study was designed to determine if increased ...

متن کامل

Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine.

BACKGROUND Hyperhomocysteinemia is a putative risk factor for cardiovascular disease, which also impairs endothelium-dependent vasodilatation. A number of other risk factors for cardiovascular disease may exert their adverse vascular effects in part by elevating plasma levels of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase. Accordingly, we determined if h...

متن کامل

Impaired nitric oxide synthase pathway in diabetes mellitus: role of asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolase.

BACKGROUND An endogenous inhibitor of nitric oxide synthase, asymmetric dimethylarginine (ADMA), is elevated in patients with type 2 diabetes mellitus (DM). This study explored the mechanisms by which ADMA becomes elevated in DM. METHODS AND RESULTS Male Sprague-Dawley rats were fed normal chow or high-fat diet (n=5 in each) with moderate streptozotocin injection to induce type 2 DM. Plasma A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 90 7  شماره 

صفحات  -

تاریخ انتشار 2002